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Supplementary Note 1. The principle of event-based camera and the conversion 

from event data to image datasets 

 

Conventional cameras produce a series of frames at a fixed frequency. However, a 

significant issue arises due to the loss of crucial information between two neighboring 

frames. Additionally, conventional cameras necessitate substantial memory, energy 

expenditure, and latency, which collectively contribute to the suboptimal real-time 

performance of numerous algorithms. 

 

Event cameras do not adhere to the conventional concept of “frames”. In response to a 

change in a real scene, the Event cameras generate pixel-level outputs, or events. An 

event consists of ε(x, y, t, p), where x, y are the pixel coordinates of the event in 2D 

space, t is the timestamp of the event, and p is the polarity of the event. The polarity, 

which can be either positive or negative, indicates the direction of the brightness change 

in the scene. 

 

The operational principle of an event camera is based on detecting changes in the 

logarithmic light intensity at each pixel. When the change in brightness at a given pixel 

exceeds a certain threshold C, an “on” event is triggered if the intensity is increasing, 

and an “off” event is triggered if it is decreasing. This process can be mathematically 

expressed as: 

 ( )log , , log ( , , )I x y t I x y t t C− − =   (S1.1) 

where I denotes the brightness of the pixel and C is the output threshold. It is noteworthy 

that the threshold C is adjustable and correlates with the light sensitivity of the event 

camera. As a result, when recording with an event camera, a series of events εi(xi, yi, ti, 

pi) with varying durations can be captured.  

 

Since the optical diffraction neural network cannot directly process the event-based 

video information from event camera, it is necessary to convert this data into a two-

dimensional grayscale image through dimensionality compression. In our work, we 

encode the polarity information of the event vectors according to Equation (S1.2), then 

the increase and decrease of pixel brightness are represented as two different grey levels 

on the greyscale image:  
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By stacking all the events over a period of time, we obtain an image that contains 

information about the motion of the target object over that period of time, which can be 

represented as an image:  
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The obtained image Ei is denoised using a noise filter and then directly fed into the 

GAN-guided DNN for model training or utilized as image information for the 



assessment of the trained model's efficacy. 

 

 

Supplementary Note 2. Performance of GAN-guided DNN in visual tracking and 

imaging for the more complex scene 

 

As shown in Figure S1a, our GAN-guided DNN exhibits high accuracy in tracking and 

imaging the target, even in a complex scene where the interfering car shares the same 

speed, profile, and comparable size as the target. Notably, the target car follows a more 

intricate motion trajectory, covering the entire plane. Figure S1b displays the phase 

distribution of the two diffractive layers in the GAN-guided DNN at the end of training. 

Furthermore, Figure S1c presents a quantitative analysis of the imaging performance 

based on structural similarity (SSIM) and peak signal-to-noise ratio (PSNR). The 

results indicate that the average SSIM is 0.9 and the PSNR is 21 dB, confirming that 

the trained DNNs maintain high accuracy for target tracking and imaging in challenging 

scenarios. 

 

 

Supplementary Note 3. Evaluation of GAN-guided DNN performance under 

different lighting conditions 

 

As shown in Figure S2, the total light power in the experiment was set to 0.5μW. We 

tested the model using 10%, 30%, 50%, and 100% of this total power for illumination 

and dataset acquisition. The first row of Figure S2c shows the event camera captures of 

the same dynamic action under these different lighting conditions. These recorded 

events are converted into formats suitable for the GAN-guided DNN training process. 

The output of the trained GAN and DNN for the training set data is also displayed in 

Figure S2c, while Figure S2b presents the imaging quality of the test results under the 

four lighting scenarios. 

 

When the light was reduced to 50% of the original power, the high dynamic range of 

the event camera ensured that the recorded events did not blur, as would occur with 

traditional cameras. The GAN-guided DNN trained under this condition performed 

similarly to the 100% light scenario. At 30% illumination, the event-based GAN-guided 

DNN could still track the target, though the generated image showed slight distortions 

due to reduced input information. However, when the light was further reduced to 10% 

of the total power, the event camera recorded fewer events, as the pixel brightness 

variation decreased in this extremely low-light environment. Under these conditions, 

the GAN-guided DNN could not perform successful target tracking and imaging due to 

the substantial loss of input data. It is important to note that at 10% lighting, the power 

is only 0.05μW, which is nearly invisible to the human eye.  

 

 

 



Supplementary Note. 4. Detailed descriptions of experimental data acquisition 

systems and GAN-guided DNN test setup 

 

Figure S3a illustrates the optical setup for data acquisition using event-based cameras. 

The video is decomposed into individual frames, loaded onto a DMD, and switched at 

400 fps. A 4f system is used to conjugate the DMD’s imaging surface with the sensing 

surface of the event-based camera, generating high-quality motion video. The event-

based camera captures and converts this into a data format trainable by the GAN-guided 

DNN. DMD: Digital Micromirror Device (DLP9000X, Texas Instruments); Event-

based camera (DAVIS346, iniVation). The wavelength of the incident continuous light 

is 532 nm.  

 

Figure S3b shows the optical setup for the GAN-guided DNN test system. The incident 

continuous wave at a wavelength of 632.8 nm is generated by a He-Ne laser (CW, 

HNL210L, Thorlabs) with a power output of 14.4 mW. The beam is spatially filtered 

and systematically irradiated to SLM1 (X13138, Hamamatsu). To load the amplitude 

information of the input image on the spatial light modulator (SLM), two quarter-wave 

plates (QWPs) with orthogonal fast axes are mounted on the front and back of the SLM1 

(X13138, Hamamatsu). The next two SLMs (SLM 2 and SLM 3, X13138, Hamamatsu) 

with a spacing distance of 150 mm are utilized to construct diffractive neural networks 

for visual tracking and imaging of the interested moving target. The output image is 

captured by the CCD camera (acA2040-90uc, Basler). 

 

 

Supplementary Note 5. The comparison between the GAN-guided DNN and a 

DNN without GAN-guided 

 

Figure S4 illustrates different frames of a motion video recorded by an event camera, 

with the output of various events converted into images. These images serve as inputs 

for training both the GAN-guided DNN and the DNN without GAN guidance. As 

observed, the event camera captures dynamic actions but may miss certain information. 

Consequently, the DNN without GAN guidance, trained directly on these incomplete 

images, only retains the position information of the tracking target and lacks the ability 

to repair missing data. In contrast, the GAN-guided DNN benefits from the GAN’s 

generator to reconstruct the missing information, providing more accurate shape details 

of the tracking target. We use PSNR to evaluate the tracking and imaging accuracy of 

both models. Figure S4b shows that, without GAN guidance, the PSNR between the 

standard DNN’s output and the target is approximately 15 dB. In comparison, the PSNR 

for the GAN-guided DNN is about 22-23 dB, indicating that the GAN-guided DNN 

performs significantly better in imaging tasks, successfully addressing challenges that 

the standard DNN struggles with. 

 

 

 



Supplementary Note 6. The quantitative analysis of GAN-guided DNN and 

existing visual tracking and imaging solutions 

 

The existing solution uses the traditional frame-based camera as the data acquisition 

terminal, with captured images processed as input for network training. In contrast, our 

work utilizes an event camera for information acquisition. The key differences are 

summarized in Table 1.  

 

It can be observed that using the event camera for information input offers significant 

advantages in terms of output frequency, energy consumption, and dynamic range. 

 

Table 1. Frame camera and event camera 

 Frame camera Event camera 

Frequency <64 ~10e6 

Energy consumption >2 W <10 mW 

Dynamic range 60 dB 140 dB 

 

After receiving the input information, both the GAN-guided DNN and the existing 

method, which only uses GAN for visual tracking, rely on computer-based network 

training, with no significant differences between them in this process. However, during 

testing or application, the existing solution performs visual tracking and imaging tasks 

using traditional computer architecture, whereas the GAN-guided DNN leverages the 

diffraction effect of light. The key differences between the two approaches are 

presented in Table 2. 

 

Table 2. The difference between GAN-only solution and GAN-guided DNN 

 GAN-only GAN-guided DNN 

Computing speed >10e-2 s ~10e-5 s 

Energy consumption ~300 W 10~20 W 

 

It is important to note that the current limitations on the computing speed and energy 

consumption of the GAN-guided DNN stem not from the model itself, but from the 

hardware system. For example, due to the extremely fast speed of light, the information 

transmission in a DNN is also incredibly fast, with almost zero delay. As a result, the 

image loading speed (e.g., SLM and DMD image upload speed) becomes the bottleneck 

for computing speed. Similarly, while the energy consumption of GAN networks is 

primarily due to GPU usage, the energy consumption of GAN-guided DNNs is mainly 

driven by the laser and DMD operation. Nonetheless, in terms of both computational 

speed and energy efficiency, the GAN-guided DNN far surpasses existing visual 

tracking and imaging solutions. 

 

 

 



Supplementary Note 7. The construction and the training details of GAN 

 

The training of a GAN is an unsupervised process, typically using a stochastic gradient 

descent algorithm. During training, random noise z is often sampled from a uniform or 

Gaussian distribution, known as the prior distribution PZ(z). This random noise serves 

as the input to the generator G, which then produces new data G(z), effectively mapping 

the noise to a new data space. This generated data G(z) is assumed to follow the 

distribution Pg(z). The input to the discriminator D consists of two sets of data: one is 

the generated data G(z), and the other group is the real-world data x, which follows the 

distribution Pdata(z). The role of the discriminator is to evaluate the authenticity of these 

two sets of data by outputting a scalar probability, representing how likely a given input 

belongs to the real data distribution. A higher value indicates that the generated data 

G(z) closely resembles the real data x. If the distributions of the real and generated data 

are very different, the discriminator can easily distinguish between them62.  

 

Thus, during training, the objective of the discriminator D is to maximize D(x), the 

probability that real data is correctly identified, while minimizing D(G(z)), the 

probability that generated data is incorrectly classified as real. Meanwhile, the goal of 

the generator G is to make the distribution G(z) of the generated new data as close as 

possible to the real data distribution Pdata(x), so that the discriminator D cannot 

distinguish the newly generated data from the real data. Therefore, the objective 

function for optimizing the generating adversarial network can be expressed in 

Equation (S7.1): 
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During training, the two networks engage in a dynamic "game process". In order to 

provide a sufficient learning gradient for both the generator G and the discriminator D, 

the natural logarithm function is usually used. For the loss function, a larger log(D(x)) 

indicates a higher probability that the discriminator D correctly classifies real data x as 

real, meaning better performance. Conversely, a larger D(G(z)) implies a higher 

likelihood that D incorrectly classifies the fake data generated by G as real, reflecting 

poorer performance. The term 1-D(G(z)) represents the probability that D correctly 

identifies the fake data, and thus, a larger log(1-D(G(z))) indicates stronger performance 

by the discriminator. 

 

Therefore, when training the discriminator D, the objective is to maximize log(D(x)) 

and log(1-D(G(z))), ensuring the network can distinguish fake data from real data with 

the highest accuracy. In contrast, when training the generator G, the goal is to minimize 

log(1-D(G(z))), even though this maximizes the loss for the discriminator. In this 

process, two networks need to be iteratively trained alternately, one network is fixed, 

and the parameters of the other network are optimized. The purpose of training is to 

maximize the loss of the other network. Finally, the fake data generated by G becomes 

increasingly indistinguishable from the real data, causing D to struggle in making a 

distinction.  



The process begins by sampling m noise inputs from the noise distribution Pg(z) 

alongside m real data samples from the real data distribution Pdata(x). These m samples 

form the minimum training batch. Next, the generator network held is fixed while the 

discriminator is trained using stochastic gradient ascent algorithm to update its 

parameters, thereby maximize log(D(x)) and log(1-D(G(z))). The corresponding 

expression is as follows: 
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where i represents the i-th sample from the m randomly selected samples, and ∇ denotes 

the derivative. 

 

After completing one iteration of the training process, m noise samples are randomly 

selected from the new noise data distribution. With the parameters of the discriminator 

network D fixed, and the parameters of the generator network G are updated. Then, the 

random gradient descent algorithm is used, that is, to minimize log(1-D(G(z))). The 

corresponding expression is as follows: 
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The variable i in Equation (S7.3) carries the same meaning as in Equation (S7.2). 

 

When the data distribution of the generated data, Pg(z), aligns with that of the real data, 

Pdata(x), the network model reaches an optimal solution. In this case, the generator 

demonstrates a strong ability to produce data nearly indistinguishable from real data. 

Similarly, the discriminator exhibits high learning capacity but is unable to reliably 

distinguish between fake data generated by the generator and actual real data. Thus, the 

network successfully generates synthetic data that closely approximates the real data. 

 

  



 

Supplementary Figure S1. Performance testing of GAN-guided DNNs for visual tracking and imaging 

in complex scenarios. (a) Visual tracking and imaging results of the GAN-guided DNN for target cars in 

a complex scene, which includes a moving pedestrian and two similarly shaped cars. (b) Phase 

distributions of the two diffraction layers in the double-layer DNN trained under GAN guidance. (c) 

SSIM and PSNR values of the GAN-guided DNN’s imaging results compared to the labels in the test set 

for complex scenes. 

  



 

Supplementary Figure S2. Visual tracking and imaging results from the GAN-guided DNN under 

varying illumination conditions of 10%, 30%, 50%, and 100% of the total light power (0.5µW). (a) A 

dynamic motion scenario. (b) PSNR values of the GAN-guided DNN outputs under different lighting 

conditions. (c) The training process of GAN-guided DNN across varying lighting conditions.  

 



 

Supplementary Figure S3. The picture of the experimental demonstration system. (a). The optical setup 

and light path for data set collection. (b). The optical setup and light path for GAN-guided DNN testing. 

 



 
Supplementary Figure S4. Visual tracking and imaging results for the same target using GAN-guided 

DNN versus DNN without GAN. (a) The training results for the visual tracking and imaging of the target 

car. (b) PSNR values for the same test object, comparing the imaging quality and accuracy of GAN-

guided DNN and DNN without GAN.  


